Analiza porównawcza zbiorników Stawy Jana i Stawy Stefańskiego pod kątem ich rekultywacji

Comparative analysis of Jana and Stefański reservoirs for their recultivation

Praca magisterska wykonana
w Katedrze Ekologii Stosowanej UŁ
pod kierunkiem
dr Tomasza Jurczaka

Łódź, 2014
Serdecznie dziękuję

Paniu dr Tomaszowi Jurczakowi
za opiekę, cenne wskazówki merytoryczne,
wyrozumiałość, poświęcony czas i pomoc

Paniu prof. dr hab. Maciejowi Zalewskiemu
za umożliwienie mi zrealizowania pracy magisterskiej

Paniu dr Zbigniewowi Kaczkowskiemu
za pomoc w przeprowadzeniu badań i opracowywaniu wyników

Pani mgr Zuzannie Oleksińskiej
za pomoc w przeprowadzeniu badań,
udostępnienie danych monitoringowych z ubiegłych lat oraz analizie zooplanktonu

Paniu dr Bogusławowi Szulcowi
za pomoc w analizie fitoplanktonu

Pani mgr Edycie Cichowicz
za pomoc w analizie chemicznej
Pracę magisterską wykonano ramach realizacji projektu LIFE+ pt.: „Ekohydrologiczna rekultywacja zbiorników rekreacyjnych „Arturówek (Łódź) jako modelowe podejście do rekultywacji zbiorników miejskich” (EH-REK) LIFE08 ENV/PL/000517.

Projekt finansowany z Unii Europejskiej i Narodowego Funduszu Ochrony Środowiska i Gospodarki Wodnej.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>Analiza zooplanktonu</td>
<td>28</td>
</tr>
<tr>
<td>3.9</td>
<td>Analiza ichthiofauny</td>
<td>29</td>
</tr>
<tr>
<td>3.10</td>
<td>Analiza osadów denny</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Wyniki</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Rola warunków meteorologicznych w kształtowaniu procesów zachodzących w zbiornikach</td>
<td>31</td>
</tr>
<tr>
<td>4.2</td>
<td>Wpływ parametrów fizyczna na jakość wód</td>
<td>31</td>
</tr>
<tr>
<td>4.3</td>
<td>Wpływ parametrów chemicznych na jakość wód</td>
<td>36</td>
</tr>
<tr>
<td>4.4</td>
<td>Wpływ parametrów hydrologicznych rzek zasilających zbiorniki na jakość wód.</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Dynamika fitoplanktonu w zbiornikach Stawy Jana i Stawy Stefańskiego</td>
<td>42</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Sezonowa dynamika chlorofilu a</td>
<td>42</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Sezonowa dynamika biomasy fitoplanktonu</td>
<td>43</td>
</tr>
<tr>
<td>4.6</td>
<td>Wpływ toksyn sinicowych na jakość wód</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Dynamika zooplanktonu w zbiornikach Stawy Jana i Stawy Stefańskiego.</td>
<td>46</td>
</tr>
<tr>
<td>4.8</td>
<td>Skład gatunkowy ichthiofauny oraz jej rola w strukturze troficznej</td>
<td>47</td>
</tr>
<tr>
<td>4.9</td>
<td>Wpływ osadów denny na jakość wód w zbiornikach</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>Oddziaływanie zagospodarowanie terenu w zlewni na zbiorniki Stawy Jana i Stawy Stefańskiego</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Dyskusja</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>Wnioski</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Streszczenie.</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>Literatura</td>
<td>65</td>
</tr>
</tbody>
</table>
Wykaz skrótów:

TZO: trwałe zanieczyszczenia organiczne
PCDD: polichlorowane dibenzodioksyny
PCDF: polichlorowane dibenzofurany
PCB: polichlorowane bifenyle
MC-LR: mikrocystyna-LR
MC-YR: mikrocystyna-YR
MC-RR: mikrocystyna-RR

O p z: rzeka Olechówka powyżej zbiornika
Ja: Stawy Jana
O W: rzeka Olechówka poniżej zbiornika na wysokości ul. Wczesnej
N Rz: rzeka Ner na wysokości miejscowości Rzgów
N Z: rzeka Ner na wysokości ul. Zastawnej
G Pr: rzeka Gadka na wysokości ul. Promowej
G N G: rzeka Gadka w miejscowości Nowa Gadka
G Pa: rzeka Gadka na wysokości ul. Patriotycznej
St O: Stawy Stefańskiego – osadnik
St K: Stawy Stefańskiego – kąpielisko
N p z: rzeka Ner poniżej zbiornika
TN: azot całkowity
TP: fosfor całkowity
s.m.: sucha masa
z.o.: zawiesina ogólna

WST_{śr}: wskaźnik stanu trofii Carlsoana
1 Wstęp
1.1 Zasoby wodne na świecie

1.2 Problem eutrofizacji zbiorników wodnych

Eutrofizacja jest procesem polegającym na wzroście żywności zbiornika wodnego na skutek dopływu związków biogenicznych, co prowadzi do zachwiania równowagi wewnętrznej ekosystemu, czego przejawem jest pogorszenie się jakości wody (Istvanovics 2009). W środowisku zachodzi on samorzutnie w sposób powolny pod wpływem związków

Dopływ związków biogenicznych ze źródeł antropogenicznych doprowadza do eutrofii zbiorników oraz powstawania zakwitów. Szczególnie groźne dla zdrowia i życia ludzi są zakwity toksycznych sinic. Uniemożliwiają one wykorzystanie wody zawartej w zbiorniku zarówno do celów spożywczych jak i rekreacyjnych (Zalewski i Wagner-Łotkowska 2004). Wstępowanie zakwitów oprócz dopływu substancji biogenicznych jest także uwarunkowane poprzez: określone warunki klimatyczne (nasłonecznienie, temperaturę, wiatr), czas retencji wody oraz występowanie w zbiorniku gatunków charakteryzujących się szybkim namnażaniem, łączących się w kolonie zdolne do aktywnego i swobodnego pływania w toni wodnej (Kawecka i Eloranta 1994).

1.3 Toksyczne gatunki sinic

1.4 Jakość wód w świetle prawa UE

to: propagowanie racjonalnego korzystania z zasobów wodnych w społeczeństwie, ochrona wód o dobrym stanie ekologicznym, rekultywacja ekosystemów wodnych zdegradowanych przez człowieka, zaopatrzenie w wodę takich sektorów jak gospodarka komunalna, przemysł i rolnictwo, ograniczenie zanieczyszczenia wód podziemnych oraz minimalizowanie negatywnych zjawisk hydrologicznych (suszy i powodzi). Zgodnie z przepisami RDW system planowania gospodarowania wodami wdrożony zostanie w oparciu o podział na obszary dorzeczy. Ramowa Dyrektywa Wodna została transponowana do prawodawstwa polskiego głównie na mocy ustawy Prawo wodne oraz dodatkowo poprzez ustawy: Prawo Ochrony Środowiska, ustawę o odpadach oraz ustawę o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków (www.kzgw.gov.pl).

1.5 Zagrożenia dla zbiorników zaporowych

W przypadku zbiornika Stawy Stefańskiego problemem jest spływ powierzchniowy z pól uprawnych zlokalizowanych w bezpośrednim sąsiedztwie akwenu. Stosowanie nawozów
sztuczny oraz pestycydów w połączeniu z prowadzoną przez rolników orką wzdłuż stoku (prostopadle do linii brzegowej zbiornika), doprowadza do powstania rynien, a w konsekwencji do szybkiego spływu powierzchniowego wód. Skutkuje to wypłukiwaniem wierzchniej warstwy gleby wraz z materią organiczną bogatą w związki azotu i fosforu. Na podobne zagrożenia, lecz w dużo większej skali narażony jest Zbiornik Sulejowski zlokalizowany w południowo-wschodniej części województwa łódzkiego (Jurczak i in 2005). Ponadto zbiorniki użytkowane rekreacyjnie (jako kąpieliska) są również narażone na dopływ zanieczyszczeń generowany przez ludzi korzystających z kąpielisk. Największy ładunek zanieczyszczeń dostarczany jest do zbiorników rekreacyjnych w sezonie letnim, kiedy to miejsca te są odwiedzane przez największą liczbę osób (Jurczak i in 2012).

Prócz samego dopływu zanieczyszczeń w zbiornikach zaporowych występuje również kłopot z akumulowaniem się związków chemicznych w osadach dennych. Dotyczy to zarówno azotu, fosforu jak i metali ciężkich. Cechą charakterystyczną ostatnich z wymienionych związków jest to, że nie ulegają degradacji biologicznej, a jedynie transformacji (Wojtkowska i in. 2005). Metalami ciężkimi najczęściej doprowadzanymi do ekosystemów wodnych, w szczególności na obszarach miejskim są: ołów, miedź i cynk. Ołów generowany jest głównie poprzez intensywny rozwój transportu i związany z tym emisję spalin. Z rozwojem komunikacji wiąże się również wzrost stężenia cynku (będącego składnikiem opon) oraz miedzi (będącej składnikiem klocków hamulcowych). Cynk może być także składnikiem pokryć dachowych i przedostawać się do ekosystemów wodnych wraz ze spływem wód opadowych (Engstorm 2004). Poważny problem stanowią również TZO – trwałe zanieczyszczenia organiczne, które gromadzą się w zbiornikach zaporowych, głównie

1.6 Ochrona i rekultywacja zbiorników zaporowych

W celu poprawy i/lub utrzymania dobrej jakości wody podejmowane działania muszą być oparte zarówno o system ochrony zbiornika jak i rekultywacji. Pierwszy z nich związany jest z ograniczeniem dopływu zanieczyszczeń do zbiorników, drugi zaś polega na eliminacji negatywnych skutków zanieczyszczeń.

Ochrona jakości wód są to działania mające na celu ograniczenie dopływu zanieczyszczeń do zbiornika czy cieku wodnego. Jej celem jest zapewnienie odpowiedniej jakości wód, które nie zostały jeszcze zdegradowane np. w wyniku działalności człowieka. Jakość wody powinna stwarzać odpowiednie warunki do bytowania organizmów ze wszystkich poziomów troficznych. Powinna również umożliwiać wykorzystanie wód do spożycia oraz do celów rekreacyjnych (http://h2o.zrodla.org/materialy/). Metodami służącymi do realizacji powyższych celów są m.in.: budowa osadników wstępnych na rzekach, właściwe zagospodarowanie zlewni poprzez zwiększanie udziału powierzchni przepuszczalnych, czy konstruowanie stref buforowych. Celem rekultywacji jest natomiast poprawa jakości wód w skali zlewni poprzez eliminację negatywnych skutków degradacji ekosystemu, które wystąpiły w zbiorniku. Dotyczy ona ekosystemów wodnych, w których przekształcenia wywołane działalnością człowieka są tak zaawansowane, że nawet usunięcie źródła zanieczyszczeń nie pozwoli na samorzutną restytucję. Z rekultywacją ekosystemów wodnych związane jest również pojęcie renaturyzacji, czyli działań zmierzających do przywrócenia wodom ich naturalnych właściwości, które zostały utracone (http://h2o.zrodla.org/materialy/). Aby zrealizować wyżej wymienione cele należy zastosować metody rekultywacji takie jak np.: bagrowanie czy biomanipulacja.
1.6.1 Metody ochrony i rekultywacji zbiorników zaporowych

Jedną z metod umożliwiającą ochronę wód są osadniki wstępne konstruowane na rzekach zasilających akweny. Są one konstruowane w celu ograniczenia zamulania zbiorników zaporowych (Koszewicz 2001; Pikul i Rackiewicz 2003). Sedymentacja cząstek stałych transportowanych przez rzeki doprowadza do wypłycania się akwenów oraz zmniejszenia ich pojemność użytkową. Rolą osadników czy zbiorników wstępnych jest sedymentacja zanieczyszczeń i cząstek stałych. W konsekwencji doprowadza to do wstępnego podczyszczenia wód, które następnie trafiają do zbiornika głównego (Pikul i Mokwa 2006).

Jedną z metod zmniejszającą ilość zanieczyszczeń transportowanych do cieków wodnych i zbiorników jest także zwiększenie udziału powierzchni przepuszczalnych. Dotyczy to przede wszystkim zbiorników zlokalizowanych na obszarach zurbanizowanych. Tam udział powierzchni nieprzepuszczalnych związanych z miejskim charakterem zabudowy (infrastruktura komunikacyjna, parkingi, gęsta zabudowa) jest większy w stosunku do terenów wiejskich. W związku z tym wody opadowe zamiast infiltrować do gruntu, są szybko odprowadzane do rzek i zbiorników w postaci spływu powierzchniowego (Bogacz-Rygas 2008). Opady deszczu powodują także spłukiwanie zanieczyszczeń z dużych powierzchni uszczelnionych i tym samym stają się „ściekami” (Osmulska-Mróz 1992). Aby temu zapobiec należy podejmować próbę odtworzenia terenów zielonych w miastach i starać się żeby były one rozmieszczone równomiernie. Tak zagospodarowane obszary umożliwiają odbiór wód opadowych z lokalnych powierzchni nieprzepuszczalnych oraz ich magazynowanie lub infiltrację (Buranen 2010). Dzięki temu odciążone zostaną odbiorniki zanieczyszczeń (zbiorniki zaporowe i rzeki zasilające), do których odprowadzane są „ściekami” z kanalizacji burzowej.

Metodą ochrony zbiorników zaporowych przed zanieczyszczeniami obszarowymi są strefy ekotonowe. Są to pasy porośnięte roślinnością zlokalizowane pomiędzy polami uprawnymi, a ekosystemami wodnymi. Ich zadaniem jest zmniejszenie stężenia związków azotu i fosforu zarówno w wodach gruntowych jak i w spływie powierzchniowym. Związki te wpływają na zanieczyszczenie zbiorników i przyczyniają się do ich eutrofizacji. Można wyróżnić 4 najważniejsze procesy zachodzące w strefach ekotonowych:

- pobieranie związków nieorganicznych przez rośliny i wbudowywanie ich w biomasę
- sorpcja rozpuszczalnych form azotu przez glebę
sedymentacja cząstek stałych przemieszczających się wraz ze spływem powierzchniowym (wpływa to na zmniejszenie erozji gleby oraz ogranicza przemieszczania się nierozpuszczalnych form azotu)

procesy biogeochemiczne takie jak: denitrifikacja (rozkład azotanów do azotu atmosferycznego) i mineralizacja (zwiększenie tempa obiegu materii oraz produktywności ekosystemów)

Wszystkie wyżej wymienione procesy przyczyniają się do wzrostu efektywności oczyszczania wód powierzchniowych i podziemnych (Naiman i in. 1989, Zalewski i in. 1991, Zalewski i in. 2001, Izydorczyk i in. 2012). W przypadku dużych stężeń związków azotu wzmocnieniem działania stref ekotonowych mogą być ściany denitrifikacyjne. Ich zadaniem jest przyspieszenie procesu denitrifikacji, a konkretnie etapu mikrobiologicznego, w którym udział biorą bakterie. Ściany zbudowane są z materiału organicznego (trocin, październicy) stanowiącego źródło węgla dla bakterii oraz z substancji będącej regulatorem pH (Bednarek i in. 2010). Ich efektywność w redukcji mineralnych form azotu wynosi nawet 75%.

Pierwszą najbardziej znaną i powszechnie stosowaną metodą rekultywacji zbiorników wodnych jest bagrowanie, czyli mechaniczne usuwanie osadów dennych. Doprowadza to do usunięcia substancji biogenicznych zakumulowanych na dnie zbiornika. Dzięki temu związki fosforu pochodzące z osadów dennych nie powracają do biogeochemicznego obiegu. Rozwiązanie to wykorzystywane było w przypadku rekultywacji zbiorników Arturówek w Łodzi realizowanego w ramach projektu EH-REK. Wadą tej metody są wysokie koszty ze względu na konieczność wynajęcia specjalistycznego sprzętu oraz zagospodarowania osadów, a uzyskany efekt nie zawsze musi być zadawalający. Pewnego rodzaju ograniczeniem dla tego typu rozwiązania jest również czasochłonność, dlatego może być ono zastosowane tylko dla zbiorników o niewielkiej powierzchni (Kajak 1998b).

Kolejną z metod rekultywacji jest biomanipulacja polegająca na celowym wprowadzaniu organizmów z danego poziomu troficznego. Ma to na celu zrównoważenie liczebności osobników w poszczególnych grupach troficznych. Zabiegi te są dokonywane w przypadku masowego rozwoju organizmów na którymś z poziomów „piramidy troficznjej”. Przykładem mogą być tutaj ryby planktonożerne odżywiająca się organizmami zooplanktonowymi występującymi w zbiorniku wodnym. Stanowią one pokarm dla ryb we wszystkich stadiach narybkowych. Dorosłe osobniki mają bardziej zróżnicowaną dietę ponieważ mogą odżywiać się larwami owadów lub innymi rybami. Obecność w zbiorniku dużej ilości narybku wpływa na zmniejszenie populacji zooplanktonu. To z kolei przyczynia
się do wzrostu znaczenia fitoplankttonu, który wobec braku presji ze strony konsumentów zaczyna się silnie rozwijać, tworząc zakwity wody (Frankiewicz 1998). W ich zwalczaniu zabiegi biomanipulacyjne mogą być realizowane również przez odlów narybku odżywiającego się konsumentami fitoplankttonu tworzącego zakwity. Powyższe metody pokazują jak można wpływać na poprawę jakości wód w zbiornikach wykorzystując metody biologiczne.

1.7 Ekohydrologiczne podejście do rozwiązywania problemów w skali zlewni

mające na celu minimalizacje zagrożeń w skali zlewni muszą być elastyczne w stosunku do dynamicznego układu jakim jest przyroda. Jedynymi z najpoważniejszych zagrożeń są zmiany klimatyczne, na które wpływ mają silnie nagrzewające się tereny zurbanizowane tworzące tzw. „miejską wyspę ciepła”. Niekorzystnym zjawiskiem jest również ciągły wzrost liczby ludności w miastach przyczyniający się do zwiększania ich powierzchni. Aby dobrze zarządzać zasobami wodnymi na terenach zurbanizowanych konieczna jest integracja wiedzy z dziedziny ekologii i hydrologii wraz z rozwiązaniami technicznymi. Pozwoli to na dostosowanie miejskich ekosystemów wodnych do zaburzeń jakie występują w zmienionym cyklu hydrologicznym (Wagner i Breil 2013).

Rys.1 Sekwencyjnego system sedymentacyjno-biofiltracyjny (Wagner i Zalewski 2009b).

1.8 Cele pracy

Zbiorniki Stawy Jana oraz Stawy Stefańskiego w Łodzi są miejscem rekreacji i dają możliwość codziennego wypoczynku dla mieszkańców miasta i okolic. Umożliwiają one uprawianie sportów wodnych i wszelkiego rodzaju aktywności fizycznej, a ich obecność wpływa na podniesienie jakości życia w mieście. Ekosystemy te stanowią również miejsca siedliskowe dla wielu roślin i zwierząt w silnie zmienionym krajobrazie antropogenicznym jakim jest miasto. Zbiorniki te narażone są na dopływ zanieczyszczeń pochodzących z przemysłu, gospodarki komunalnej oraz spływu z dużych powierzchni uszczelnionych i pól uprawnych. Aby ograniczyć negatywny wpływ antropopresji należy podjąć działania zmierzające do poprawy jakości wody w obu zbiornikach. Działania te są obligatoryjne ze względu na obowiązujące również w Polsce prawo UE, a konkretnie Ramowa Dyrektywa Wodna, której wymogiem jest osiągnięcie dobrego stanu wszystkich wód do roku 2015.

Celem niniejszej pracy jest analiza porównawcza obu zbiorników w skali zlewni pod kątem występujących w niej zagrożeń. Będzie ona realizowana w oparciu o:

1) analizę parametrów fizycznych i chemicznych wody, analizę parametrów hydrologicznych rzek oraz analizę chemiczną osadów dennych,
2) analizę struktury troficznej zbiorników,
3) identyfikację toksycznych gatunków sinic,
4) identyfikację punktowych i obszarowych źródeł zanieczyszczeń.
5) zagospodarowanie terenu

2. Teren badań

Badania monitoringowe wody przeprowadzono w dwóch zbiornikach rekreacyjnych znajdujących się w południowej części Łodzi: Stawy Jana i Stawy Stefanańskiego. Miejscem poboru próbek wody były również rzeki zasilające te zbiorniki, w przypadku Stawów Jana – rzeka Olechówka, zaś w przypadku Stawów Stefanańskiego – rzeki Ner i Gadka (Rys. 2). Badania wody odbywały się w okresie od 30 kwietnia do 22 października 2013 roku. Próbki wody do dalszych analiz pobierano 6-krotnie, w odstępach miesięcznych, na wszystkich stanowiskach monitoringowych przedstawionych na Rys 2.

Zbiorniki będące przedmiotem badań, pełnią przede wszystkim funkcję rekreacyjną i wypoczynkową. Są miejscem przeznaczonym do kąpieli, uprawiania sportów wodnych oraz rekreacyjnego połowu ryb. Ze względu na wyżej wymienione formy użytkowania niezbędne jest utrzymanie odpowiedniej jakości wody, umożliwiającej bezpieczne korzystanie ze zbiorników. Oba akweny znajdują się w użytkowaniu Miejskiego Ośrodka Sportu i Rekreacji w Łodzi, zaś korzystanie z nich jest bezpłatne.

Rys. 2 Lokalizacja miejsc poboru próbek: 1 – rzeka Olechówka powyżej zbiornika (Opz), 2 – Stawy Jana (Ja), 3 – rzeka Olechówka poniżej zbiornika na wysokości ul. Wczesnej (OW), 4 – rzeka Ner na wysokości miejscowości Rzgów (NRz), 5 – rzeka Ner na wysokości ul. Zastawnej (NZ), 6 – rzeka Gadka na wysokości ul. Promowej (G Pr), 7 – rzeka Gadka w miejscowości Nowa Gadka (GNG), 8 – rzeka Gadka na wysokości ul. Patriotycznej (GPa) 9 – Stawy Stefanańskiego - osadnik (St O), 10 – Stawy Stefanańskiego – kąpielisko (St K), 11 – rzeka Ner poniżej zbiornika (Npz) (źródło: https://www.google.pl/maps/)
Rys. 3 Dokumentacja fotograficzna z miejsc poboru próbek – Stawy Jana (1 – rzeka Olechówka powyżej zbiornika (Opz), 2 – Stawy Jana przy wejściu rzeki Olechówki do zbiornika(Ja), 3 – Stawy Jana (Ja), 4 – rzeka Olechówka poniżej zbiornika na wysokości ul. Wczesnej (OW))
Rys. 4 Dokumentacja fotograficzna z miejsc poboru próbek – Stawy Stefanińskiego (5 – Ner Rzgów (NRz), 6 – Ner ul. Zastawna (NZ), 7 – Gadka ul. Promowa (GPr), 8 – Gadka – Nowa Gadka (GNG), 9 – Gadka - ul. Patriotyczna (GPa) 10 – Stawy Stefanińskiego – Osadnik (StO), 11– Stawy Stefanińskiego – Kąpielisko (StK), 12 – Ner poniżej zbiornika (Npz)
2.1. Stawy Stefańskiego

Zbiornik położony jest w południowo-zachodniej części Łodzi przy ulicy Patriotycznej. Składa się on ze zbiornika głównego o pojemności 200 000 m³ i powierzchni 11,4 ha oraz zbiornika wstępnego pełniącego rolę osadnika o pojemności 32 000 m³ i powierzchni 1,85 ha. Zbiornik główny jest częściowo opróżniany z wody jesienią i napełniany wodną na przełomie marca i kwietnia. Akwen jest zasilany wodami dwóch rzek: Ner i Gadka. Stawy Stefańskiego posiadają cechy typowego zbiornika zaporowego – wydłużenie wzdłuż osi rzeki i bardzo mała głębokość. Na brzegach zbiornika znajdują się umocnienia w postaci betonowych bloków. Wzdłuż biegu rzek w obrębie zbiornika znajdują się dawne umocnienia koryta rzecznego. Na dnie zbiornika zalega gruba warstwa osadów dennych. Zbiornik utworzony został poprzez wybudowanie na rzece Ner zapory czołowej (wysokość ok. 4 metrów). Budowla powstała w okresie międzywojennym, a zmodernizowano ją w roku 1995. W okresie zimowym zbiornik jest pusty, natomiast wiosną ponownie spiętrza się wody rzeki Ner, w celu wypełnienia go wodą (Urząd Wojewódzki w Łodzi 1995). W skład zlewni bezpośredniej przylegającej do brzegów zbiornika wchodzą: od południa pola uprawne, od zachodu tereny zieleni miejskiej, natomiast od wschodu zabudowa mieszkaniowa jednorodzinna.

2.1.1 Zlewnia rzeki Ner

Całkowita długość rzeki Ner wynosi 134 km, natomiast odcinek znajdujący się na terenie miasta ma długość 11,5 km. Jest to największa rzeka w granicach Łodzi (Bieżanowski 2003). Ner charakteryzuje się dobrze rozwiniętą doliną rzeczną o wyraźnym nachyleniu stoków. W przeważającej części rzeka posiada koryto o charakterze naturalnym. Fragmenty koryta o charakterze antropogenicznym występują jedynie przed wejściem do zbiornika Stawy Stefańskiego oraz pomiędzy Rzgowem, a stawami hodowlanymi. Zlewnię monitorowanego odcinka rzeki stanowią pola uprawne oraz zabudowa mieszkaniowa jednorodzinna.

2.1.2. Zlewnia rzeki Gadka

Gadka jest ciekiem o wiele mniejszym niż Ner. Jej długość wynosi ok. 4,7 km (w granicach Łodzi znajduje się ok. 1,3 km). Obszar zlewni to jedynie 12 km² (Bieżanowski

2.2. Stawy Jana

2.2.1 Zlewnia rzeki Olechówki

Olechówka jest niewielką rzeką o długości ok. 12,5 km. Cały ciek wodny jest skanalizowany i znajduje się w granicach administracyjnych Łodzi (Bieżanowski 2003). Obszar źródłiskowy rzeki znajdują się w Parku „U Źródeł Olechówki”. W górnym biegu w skład zlewni rzeki wchodzą pola uprawne i tereny zieleni miejskiej oraz w niewielkim stopniu osiedla mieszkaniowe z zabudową jednorodzinną. Począwszy od ulicy Rzgowskiej i dalej poniżej zbiornika Stawy Jana, zlewnia rzeki ma charakter typowo miejski, włączając w to osiedla mieszkaniowe, infrastrukturę drogową, obiekty użyteczności publicznej oraz zakłady przemysłowe. Na podstawie obserwacji terenowych poniżej zbiornika stwierdzono liczne punktowe źródła zanieczyszczeń w postaci wylotów kanalizacji burzowej bezpośrednio do rzeki.
3. Materiał i metody:
3.1. Pobór próbek

Bezpośrednio po przewiezieniu próbek do laboratorium wykonywano analizę chlorofilu a in vivo, przy użyciu fluorymetru firmy bbe Moldaenke. Próbki o objętości 50 ml wykorzystywane do oznaczenia całkowitych form azotu i fosforu zamrażano do czasu analiz. Próbki do oznaczania form jonowych azotu i fosforu (również o objętości 50 ml) filtrowano przez sączki GF/C firmy Whatmann i również zamrażano do czasu analiz.
3.2. Warunki meteorologiczne

Pomiary parametrów meteorologicznych takich jak: temperatura powietrza, wilgotność, opad, zachmurzenie, ciśnienie, prędkość wiatru odczytywane były przed wyjściem w teren w dniu poboru próbek. Wartości poszczególnych parametrów meteorologicznych pochodziły z numerycznej prognozy pogody Interdyscyplinarnego Centrum Modelowania Matematycznego i Komputerowego (ICM) opublikowanej na stronie internetowej pod adresem: http://www.meteo.pl/.

3.3. Analiza parametrów fizycznych wody

Parametry fizyczne wody (temperaturę, przewodnictwo, zasolenie, pH, tlen rozpuszczony w wodzie) mierzono in situ w dniu poboru próbek. Wykorzystano do tego przenośny wieloparametrowy miernik firmy WTW model Multi 340i.

3.4. Analiza parametrów chemicznych wody

Ilościowe oznaczanie fosforu całkowitego zasto są wykonane zmodyfikowaną metodą z kwasem askorbinowym zgodnie z metodą PN-88/C-04537.04.

Azot całkowity został oznaczony metodą spektrofotometryczną z wykorzystaniem zestawu odczynników firmy HACH zgodnie z zalecaną przez producenta procedurą opublikowaną na stronie internetowej pod adresem: http://www.hach.com/.

Oznaczenia jakościowego i ilościowego jonów w wodzie dokonano za pomocą metody wysokosprawnej chromatografii jonowej (HPIC). W procedurze oznaczania wykorzystano chromatograf jonowy firmy Dionex, model ISC-1000, posiadającym oddzielny układ dla anionów i kationów. Każdy z nich składa się z: pompy wysokociśnieniowej, eluentu, kolumny ochronnej (2x50 mm) (AG18 dla anionów i CG18 dla kationów). Kolumny separacyjnej wypełnionej żywicą (2x250) (IonPac AS18 dla anionów i Ion Pac CS18 dla kationów), supresora chemicznego stabilizującego linię bazową (ASRS- ULTRA II dla anionów i CSRS-ULTRA II dla kationów), naczynka konduktometrycznego oraz systemu umożliwiającego gromadzenie danych. Dla analizy kationów eluent stanowił 16 mM kwas metanosulfonowy (firmy Fluka), a dla anionów eluentem była mieszanina 4,5 mM węglanu sodu i 1,4 mM dwuwęglanu sodu przygotowanego z koncentratu eluentu firmy Dionex AS22 Eluent Concentrate. W obydwu systemach stosowana była elucja izokratyczna w
temperaturze 30°C przy przepływie 1 ml/min. Dla oznaczenia jonów zastosowano pętlę 25 µl. Aniony i kationy w wodzie identyfikowane były przy użyciu standardu 7 anionów i standardu 6 kationów firmy Dionex. Następnie w oparciu o powierzchnię pików, przy wykorzystaniu programu Chromeleon, dokonano ilościowego ich oznaczenia.

3.5. Analiza parametrów hydrologicznych rzek: Olechówka, Ner, Gadka.

wykonany był jednokrotnie na każdym ze stanowisk monitoringowych. Urządzenie to automatycznie oblicza przepływ i podaje wyniki w jednostkach: m³/s. Metodyka została zmieniona ze względu na większą dokładność pomiarów miernikiem hydroakustycznym w stosunku do pomiarów metodą pływakową.

3.6. Analiza fitoplanktonu
3.6.1 Analiza chlorofilu a

Pomiar chlorofilu a przeprowadzony został przy użyciu fluorymetru Algae Online Analyser (AOA) firmy bbe-Moldaenke. Fluorymetry połączony był z komputerem, umożliwiającym obsługę urządzenia oraz odczyt przeprowadzonych pomiarów. Fluorescencję chlorofilu a mierzono dla czterech grup głonów: sinic, zielnic, okrzemek i kryptofitów. Pomiary odbywały się przy długościach fali w zakresie od 470 do 610 nm. Pomiar powtarzano trzykrotnie i jako wynik przyjmowano wartość średniej arytmetycznej. Fluorymetry po każdym pomiarze był płukany wodą destylowaną, a następnie zerowany. Program komputerowy analizował dane i przedstawiał je w postaci stężenia chlorofilu a wyrażonego w μg/l.

3.6.2 Analiza mikroskopowa fitoplanktonu

3.7. Analiza mikrocysty metodą HPLC

Aby przeprowadzić analizę mikrocystyn znajdujących się w komórkach, próbki wody o objętości 1 litra przefiltrowano przez sączki firmy Whatmann. Pozwoliło to na oddzielenie zawiesiny zawierającej komórki sinic od wody. Sączki pokryte zawiesiną zostały zamrożone do czasu wykonania analiz. Następnie zalewano je 6 ml 75% metanolu, a następnie poddawano działaniu ultradźwięków wykorzystując sonikator XL 2020 (Misonix Inc. USA). Procesy te spowodowały destrukcję ściany komórkowej sinic i uwolnienie z nich toksyn do roztworu. Tak przygotowane próbki były odwirowywane, a następnie odparowywane do sucha. Następnie były one rozpuszczane w 1 ml 75% wodnego roztworu metanolu i filtrowane przy użyciu filtrów strzykawkowych GHP Acrodisc 0,45 µm firmy Pall. Po przygotowaniu próbek wody poddano je analizie jakościowej i ilościowej pod względem stężenia toksyn sinicowych. Wykorzystano do tego metodę wysokosprawnej chromatografii cieczowej HPLC. Do przeprowadzenia analiz użyto chromatografu cieczowego firmy Agilent Technologies model 1100. Do rozdziału mikrocystyn użyto kolumny LiChroCart (TM) STAR RP – 18e (3µm), termostatowanej w trakcie przeprowadzania analiz w temp. 40º C. Toksyny oznaczano używając fazy ruchomej, składającej się z: rozpuszczalnika A (roztworu 0,05% kwasu trifluoroacetowego) i rozpuszczalnika B (0,05% roztworu kwasu trifluoroacetowego w acetonitrolu) w liniowym gradiencie czasowym: 0-5 min. 25-70%B, 5-6 min. 70%B, 6-6.10 min. 70-25%B, 6.10-9 min. Objętość analizowanej próbki wynosiła 20 µl, zaś przepływ fazy ruchomej – 1 ml/min. Praca chromatografu cieczowego była kontrolowana przez program komputerowy HP Chemistation. Umożliwił on również obróbkę i uzyskiwanie wyników. Mikrocystyny były oznaczane jakościowo i ilościowo na podstawie pików odpowiadających pikom krzywej kalibracyjnej oraz czasów retencji. Identyfikację przeprowadzano na podstawie widm absorpcji charakterystycznych dla poszczególnych mikrocysty przy długości fali 238 nm (Meriluoto, Codd, 2005).

3.8. Analiza zooplanktonu

Zooplankton do analiz pobierany był 6-krotnie ze stanowisk monitoringowych: Stawy Jana, Stawy Stefańskiego – kąpielisko i Stawy Stefańskiego – osadnik. Uprzednio przygotowane próbki zagęszczano do objętości 10 ml. Do oznaczania zooplanktonu wykorzystano: mikroskop Nikon 102, szkiełko podstawkowe z komorą o pojemności 1 ml, posiadającego kratkę 1/1 mm (jej zadaniem jest mierzenie osobników) oraz okular
zawierający podziałkę 0-1 mm. Analizę taksonOMICzną wykonano korzystając z kluczy do oznaczania Rybaka (1993, 1994, 1994a). Wzór przedstawiający zagęszczenie zooplanktonu w litrze wody ze zbiornika:

\[N = \frac{X V_z}{V_k V_p} \]

Wyjaśnienie symboli:
N – liczebność zooplanktonu w 1 l wody,
X – liczba policzonych osobników w komorze,
Vz – objętość zagęszcza, z którego zaczerpnięto podpróbkę do określenia liczebności (ml),
Vk – objętość komory,
Vp – objętość próbki wody poddanej zagęszczeniu.

Biomasę \([mg\ mokrej\ masy/l]\) obliczano wykorzystując wzór: (Bottrell i in. 1976, Horn 1991):

\[B = N M \]

gdzie:
N – zagęszczenie,
M – średnia mokra masa jednego osobnika danego gatunku \([mg/os]\) o określonej długości \([mm]\).

3.9. Analiza Ichthiofauny

3.10. Analiza osadów dennych

4. Wyniki

4.1 Rola warunków meteorologicznych w kształtowaniu procesów zachodzących w zbiornikach

Parametry meteorologiczne mierzone były w dniu poboru próbek w okresie od 30 kwietnia do 22 października 2013 roku. Amplituda temperatury pomiędzy najchłodniejszym a najcieplejszym dniem wyniosła 16°C. Najniższa temperatura w okresie prowadzenia badań odnotowano w kwietniu 9°C, zaś najwyższą w sierpniu 25°C. Wilgotność powietrza oscylowała pomiędzy 7% (maj), a 88% (kwiecień). Opady występowały jedynie dwukrotnie w ciągu dnia, w którym przeprowadzany był monitoring i wyniosły odpowiednio: 0,5 mm/h w kwietniu i 0-1 mm/h w maju. Średnia wartość ciśnienia atmosferycznego wyniosła 1015,5 hPa. Prędkość wiatru wahała się pomiędzy 1 m/s, a 5 m/s, zaś zachmurzenie w dniu poboru próbki było zróżnicowane w pełnym spektrum 8-stopniowej skali. Jego wartości wahały się od 0 oktantów (brak zachmurzenia) w dniu 22.10.2013 do 8 oktantów (pełne zachmurzenie) w dniu 30.04.2013. Szczegółowe wyniki przedstawiono w Tab. 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30.04.2013</td>
<td>9</td>
<td>88</td>
<td>0,5</td>
<td>1022</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>27.05.2013</td>
<td>14</td>
<td>7</td>
<td>0-1</td>
<td>1005</td>
<td>4</td>
<td>7,5</td>
</tr>
<tr>
<td>24.06.2013</td>
<td>22</td>
<td>62</td>
<td>0</td>
<td>1013</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>02.08.2013</td>
<td>25</td>
<td>55</td>
<td>0</td>
<td>1018</td>
<td>2</td>
<td>2,5</td>
</tr>
<tr>
<td>09.09.2013</td>
<td>20</td>
<td>55</td>
<td>0</td>
<td>1015</td>
<td>5</td>
<td>6,5</td>
</tr>
<tr>
<td>22.10.2013</td>
<td>12</td>
<td>85</td>
<td>0</td>
<td>1020</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2 Wpływ parametrów fizycznych na jakość wód

W zbiorniku Stawy Jana w roku 2013 średnia temperatura wody wyniosła 17,6°C, przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 24,3°C (sierpień) i 10°C (październik). Średnia temperatura na dopływie i odpływie wyniosła odpowiednio:
15,67°C i 15,85°C. W przypadku zbiornika Stawy Stefańskiego średnia temperatura wody była porównywalna do temperatury w zbiorniku Stawy Jana i wyniosła 17,43°C; nieco niższą temperaturę odnotowano w części osadnikowej zbiornika (15,7°C). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kapiełiska 10°C (październik) i 24°C (sierpień), zaś dla osadnika 10,1°C (październik) i 21,6°C (sierpień). Średnia temperatura wody wyniosła na dopływie 13,62°C dla rzeki Gadka, zaś 14,4°C dla rzeki Ner. Z kolei na odpływie średnia temperatura wody wyniosła 16,75°C.

W zbiorniku Stawy Jana w roku 2013 średnia zawartość tlenu rozpuszczonego w wodzie wyniosła 10,35 mg/l, przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio 13,31 mg/l (wrzesień) i 8,67 mg/l (czerwiec). Średnia zawartość tlenu rozpuszczonego w wodzie na dopływie i odpływie wyniosła odpowiednio 10,28 mg/l i 8,31 mg/l. W przypadku zbiornika Stawy Stefańskiego średnia zawartość tlenu rozpuszczonego w wodzie była porównywalna do tej, która odnotowano w zbiorniku Stawy Jana i wyniosła ona 10,48 mg/l (kąpielisko); znacznie niższą zawartość tlenu odnotowano w części osadnikowej zbiornika (6,31 mg/l). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kapiełiska 7,22 mg/l (maj) i 16,53 mg/l (kwiecień), zaś dla osadnika 2,72 mg/l (czerwiec) i 7,35 mg/l (kwiecień). Średnia zawartość tlenu rozpuszczonego w wodzie wyniosła na dopływie 6,28 mg/l dla rzeki Gadka, zaś 4,07 mg/l dla rzeki Ner. Z kolei na odpływie średnia zawartość tlenu rozpuszczonego w wodzie wyniosła 9,03 mg/l. Wartości saturacji były analogiczne do zawartości tlenu rozpuszczonego w wodzie.

W zbiorniku Stawy Jana w roku 2013 średnia wartość przewodnictwa wyniosła 467,17 µS/cm, przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 718 µS/cm (kwiecień) i 297 µS/cm (wrzesień). Średnia wartość przewodnictwa na dopływie i odpływie wyniosła odpowiednio: 468,83 µS/cm i 660,67 µS/cm. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 840 µS/cm we wrześniu). W przypadku zbiornika Stawy Stefańskiego średnia wartość przewodnictwa była znacznie wyższa zarówno w części kapiełiskowej zbiornika (665,22 µS/cm), jak i w części osadnikowej zbiornika (636,20 µS/cm). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kapiełiska 627 µS/cm (kwiecień) i 695 µS/cm (październik), zaś dla osadnika 510 µS/cm (czerwiec) i 692 µS/cm (sierpień). Średnia wartość przewodnictwa wyniosła na dopływie 894,17 µS/cm dla rzeki Gadka, zaś 612,5 µS/cm dla rzeki Ner. Z kolei na odpływie średnia wartość przewodnictwa wyniosła 671,83 µS/cm. Bardzo wysokie wartości przewodnictwa odnotowano na stanowisku zlokalizowanym na rzece Gadka w miejscowości Nowa Gadka, gdzie wartość średnia w całym sezonie.
monitoringowym 2013 wyniosła aż 1421,33 µS/cm. Przekłada się to na wysoką wartość przewodnictwa na dopływie rzeki Gadka do zbiornika Stawy Stefańskiego.

W zbiorniku Stawy Jana w roku 2013 jedynie w kwietniu odnotowano zasolenia wody i wyniosło ono 0,1%. Na dopływie nie odnotowano zasolenia wód podczas żadnego poboru próbek wody, z kolei na odpływie średnia wartość zasolenia wyniosła 0,15%. W przypadku zbiornika Stawy Stefańskiego średnia wartość zasolenia była taka sama jak w przypadku zbiornika Stawy Jana, zarówno w kąpielisku (0,1%), jak i w osadniku (0,1%). Wartości zasolenia w obu częściach zbiornika każdorazowo kształtowały się na poziomie 0,1%. W przypadku kąpieliska zasolenia nie odnotowano w kwietniu, zaś w przypadku osadnika w czerwcu (w maju na tym stanowisku nie przeprowadzono pomiarów zasolenia oraz pozostalych parametrów fizycznych i chemicznych). Średnia wartość zasolenia wyniosła na dopływie 0,22% dla rzeki Gadka, zaś 0,1% dla rzeki Ner. Na odpływie średnia wartość zasolenia również wyniosła 0,1%. Wyższa wartość zasolenia na dopływie w przypadku rzeki Gadka spowodowana jest bardzo wysokimi wartościami tego parametru na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 0,52%).

W zbiorniku Stawy Jana w roku 2013 średnia wartość odczynu wody wyniosła 8,15, przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio 8,71 (wrzesień) i 7,76 (kwiecień). Średnia wartość odczynu wody na dopływie i odpływie wyniosła odpowiednio 7,84 i 7,78. W przypadku zbiornika Stawy Stefańskiego średnia wartość odczynu wody była nieznacznie niższa zarówno w części kąpieliskowej zbiornika (7,64), jak i w części osadnikowej (7,64). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kąpieliska 7,56 (maj) i 8,82 (wrzesień), zaś dla osadnika 7,43 (czerwiec) i 7,88 (sierpień). Średnia wartość odczynu wody wyniosła na dopływie 7,57 dla rzeki Gadka, zaś 7,5 dla rzeki Ner. Z kolei na odpływie średnia wartość odczynu wody wyniosła 7,97.
Rys. 5 Dynamika zmian podstawowych parametrów fizycznych wody (temperatura, tlen, saturacja) na stanowiskach monitoringowych.
Rys. 6 Dynamika zmian podstawowych parametrów fizycznych wody (zasolenie, przewodnictwo, pH) na stanowiskach monitoringowych.
4.3 Wpływ parametrów chemicznych na jakość wód

W zbiorniku Stawy Jana średnie stężenie fosforu całkowitego w roku 2013 wyniosło 0,09 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio 0,142 mg/l (sierpień) i 0,048 mg/l (maj). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio 0,09 mg/l i 0,14 mg/l. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 0,266 mg/l w sierpniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie TP było wyższe w obu jego częściach i wyniosło odpowiednio: 0,17 mg/l w kąpielisku i 0,20 mg/l w osadniku. Wartości minimalne i maksymalne wynosiły odpowiednio: dla kąpieliska 0,31 mg/l (wrzesień) i 0,08 mg/l (październik), zaś dla osadnika 0,38 mg/l (sierpień) i 0,11 mg/l (czerwiec). Średnie stężenie tego parametru wyniosło na dopływie 0,4 mg/l dla rzeki Gadka, zaś 0,18 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie TP wyniosło 0,17 mg/l. Wysokie stężenie fosforu na dopływie w przypadku rzeki Gadka spowodowane było wysoką zawartością tego związku w wodzie na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 1,53 mg/l).

W zbiorniku Stawy Jana średnie stężenie azotu całkowitego w roku 2013 wyniosło 2,65 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 8,5 mg/l (kwiecień) i 0,8 mg/l (październik). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio 2,32 mg/l i 3,90 mg/l. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 9,1 mg/l w kwietniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie TN było wyższe w obu częściach zbiornika i wyniosło odpowiednio: 4,35 mg/l w części kąpieliskowej zbiornika i 5,6 mg/l w części osadnikowej. Wartości minimalne i maksymalne wynosiły odpowiednio: dla kąpieliska 1,5 mg/l (październik) i 6,8 mg/l (kwiecień), zaś dla osadnika 3 mg/l (wrzesień) i 10,3 mg/l (kwiecień). Średnie stężenie tego parametru wyniosło na dopływie: 11,58 mg/l dla rzeki Gadka i 5,53 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie TN wyniosło 3,97 mg/l. Wysokie stężenie azotu na dopływie w przypadku rzeki Gadka spowodowane było wysoką zawartością tego związku w wodzie na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 48,70 mg/l).

W zbiorniku Stawy Jana średnie stężenie fosforanów w roku 2013 wyniosło 0,06 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 0,22 mg/l (kwiecień) i 0,007 mg/l (maj). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio 0,07 mg/l i 0,14 mg/l. Znacznie wyższe wartości tego parametru odnotowywano...
na stanowisku zlokalizowanym poniżej zbiornika (maksimum 0,42 mg/l w sierpniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie fosforanów było znacznie wyższe w obu częściach zbiornika i wyniosło odpowiednio: 0,34 mg/l w części kąpieliskowej zbiornika i 0,42 mg/l w części osadnikowej. Wartości minimalne i maksymalne wyniosły odpowiednio: dla kąpieliska 0,03 mg/l (wrzesień) i 0,54 mg/l (sierpień), zaś dla osadnika 0,08 mg/l (kwiecień) i 0,78 mg/l (sierpień). Średnie stężenie tego parametru wyniosło na dopływie 1,39 mg/l dla rzeki Gadka, zaś 0,45 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie fosforanów wyniosło 0,33 mg/l. Wysokie stężenie fosforanów na dopływie w przypadku rzeki Gadka spowodowane było wysoką zawartością tego związku w wodzie na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 4,74 mg/l).

W zbiorniku Stawy Jana średnie stężenie azotynów w roku 2013 wyniosło 0,03 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 0,06 mg/l (maj) i 0,009 mg/l (sierpień). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio 0,02 mg/l i 0,06 mg/l. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 0,13 mg/l – w sierpniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie azotynów było znacznie wyższe w obu częściach zbiornika i wyniosło odpowiednio: 0,28 mg/l w części kąpieliskowej zbiornika i 0,33 mg/l w części osadnikowej. Wartości minimalne i maksymalne wyniosły odpowiednio: dla kąpieliska 0,04 mg/l (sierpień) i 0,62 mg/l (czerwiec), zaś dla osadnika 0,07 mg/l (sierpień) i 0,69 mg/l (czerwiec). Średnie stężenie tego parametru na dopływie wyniosło – 4,48 mg/l dla rzeki Gadka oraz 0,34 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie azotynów wyniosło 0,27 mg/l.

W zbiorniku Stawy Jana średnie stężenie azotanów w roku 2013 wyniosło 1,56 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio: 5,36 (kwiecień) i 0,01 mg/l (październik). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio 2,67 mg/l i 4,37 mg/l. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 9,61 mg/l – w kwietniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie azotanów było znacznie wyższe w obu częściach zbiornika i wyniosło odpowiednio: 6,6 mg/l (kąpielisko) i 6,98 mg/l (osadnik). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kąpieliska 1,77 mg/l (sierpień) i 13,83 mg/l (kwiecień), zaś dla osadnika 1,54 mg/l (sierpień) i 15,14 mg/l (kwiecień). Średnie stężenie tego parametru na dopływie wyniosło 32,62 mg/l dla rzeki Gadka i 6,83 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie azotanów wyniosło 6,09 mg/l. Wysokie stężenie azotanów na dopływie w przypadku rzeki Gadka spowodowane było bardzo wysoką
zawartością tego związku w wodzie na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 212,37 mg/l, zaś maksymalna odnotowana w maju aż 443,76 mg/l).

W zbiorniku Stawy Jana średnie stężenie jonów amonowych w roku 2013 wyniosło 0,1 mg/l przyjmując wartość maksymalną i minimalną wynoszącą odpowiednio 0,19 mg/l (maj) i 0,005 mg/l (czerwiec). Średnie stężenie tego parametru na dopływie i odpływie wyniosło odpowiednio: 0,08 mg/l i 3,14 mg/l. Znacznie wyższe wartości tego parametru odnotowywano na stanowisku zlokalizowanym poniżej zbiornika (maksimum 7,94 mg/l we wrześniu). W przypadku zbiornika Stawy Stefańskiego średnie stężenie jonów amonowych było znacznie wyższe w części osadnikowej zbiornika i wyniosło 2,86 mg/l, zaś nieznacznie wyższe w części kąpieliskowej (0,76 mg/l). Wartości minimalne i maksymalne wyniosły odpowiednio: dla kąpieliska 0,02 mg/l (sierpień) i 1,9 mg/l (maj), zaś dla osadnika 0,01 mg/l (sierpień) i 8,14 mg/l (październik). Średnie stężenie tego parametru wyniosło na dopływie: 2,05 mg/l dla rzeki Gadka oraz 4,8 mg/l dla rzeki Ner. Z kolei na odpływie średnie stężenie jonów amonowych wyniosło 0,99 mg/l. Wysokie stężenie jonów amonowych na dopływie w przypadku rzeki Gadka spowodowane było wysoką zawartością tego związku w wodzie na stanowisku zlokalizowanym w miejscowości Nowa Gadka (wartość średnia 6,77 mg/l) oraz na wysokości ul. Promowej (wartość średnia 6,22 mg/l).
Rys. 7 Dynamika podstawowych parametrów chemicznych wody (TP, TN i fosforany) na stanowiskach monitoringowych
Rys. 8 Dynamika podstawowych parametrów chemicznych wody (azotany, azotyny i jony amonowe) na stanowiskach monitoringowych.
4.4 Wpływ parametrów hydrologicznych rzek zasilających zbiorniki na jakość wód

Najwyższą wartość przepływu w rzece Olechówka zasilającej zbiornik Stawy Jana odnotowano na stanowisku Olechówka poniżej zbiornika na wysokości ul. Wczesnej w dniu 24.06.2013 i wyniosła ona 0,546 m³/s. Rząd wielkości przepływów na stanowisku Olechówka powyżej zbiornika był podobny przy czym maksimum wyniosło 0,338 m³/s i również odnotowano je 24.06.2013. Przepływy w rzekach zasilających zbiornik Stawy Stefańskiego były wyższe na stanowiskach zlokalizowanych na rzece Ner w stosunku do rzeki Gadka. Spowodowane to było różnicą w wielkości przekroju poprzecznego koryta obu rzek. Maksimum przepływu w rzece Ner 0,663 m³/s odnotowano w kwietniu na stanowisku Ner ul. Zastawna. Nieco niższy przepływy zmierzono na stanowisku Ner poniżej zbiornika, gdzie maksimum wynoszące 0,467 m³/s zostało osiągnięte w czerwcu. W rzece Gadka maksymalny przepływ 0,09 m³/s odnotowano również w czerwcu. W tym samym miesiącu na stanowisku Ner ul. Zastawna nie zmierzono przepływu ze względu na zbyt wysoki stan wód, przez co nie było możliwe określenie granicy koryta.

Rys. 9 Analiza przepływu w rzekach: Olechówka, Ner i Gadka.
4.5 Dynamika fitoplanktonu w zbiornikach Stawy Jana i Stawy Stefańskiego

4.5.1 Sezonowa dynamika chlorofilu a

Rys. 10 Stężenie chlorofilu a (zielenice, sinice, okrzemki, kryptofity, kwasy humusowe) w roku 2013 – pomiar przeprowadzony metodą fluorescencji in vivo (a – Stawy Jana, b – Stawy Stefańskiego-kąpielisko, c – Stawy Stefańskiego – osadnik)

Na stanowisku Stawy Stefańskiego – kąpielisko najwyższe stężenie chlorofilu a pochodzenia sinicowego odnotowano we wrześniu i wyniosło ono 21,38 µg/l. Okrzemki dominowały w akwenie w kwietniu i w czerwcu, kiedy to stężenie chlorofilu a osiągnęło

4.5.2 Sezonowa dynamika biomasy fitoplanktonu

Na stanowisku Stawy Jana najwyższą biomasę fitoplanktonu wynoszącą 13650 mg/l odnotowano dnia 2.08.2013. Średnia wartość biomasy fitoplanktonu na tym stanowisku wyniosła 4235 mg/l i była najwyższą spośród wszystkich trzech badanych zbiorników. W początkowej fazie sezonu monitoringowego żaden z gatunków nie odznaczał się znacząco wyższą biomasą w stosunku do pozostałych. Dopiero w czerwcu przewagę nad pozostałymi gatunkami uzyskała gromada Chlorophyta, a w niej gatunek Gonium pectorale. Dominującym gatunkiem w drugiej połowie sezonu monitoringowego (02.08.2013 i 09.09.2013) był Peridium bipes należący do gromady Pyrrophyta. Podczas ostatniego poboru próbek – jesienią odnotowano wysoką biomasę Cryptomonas ovata z gromady Cryptophyta.

W zbiorniku Stawy Stefańskiego maksimum biomasy fitoplanktonu osiągnięto 02.08.2013 i wyniosło ono odpowiednio dla stanowiska Stawy Stefańskiego – kąpielisko 8385 mg/l, zaś dla stanowiska Stawy Stefańskiego – osadnik 3946 mg/l. Średnia wartość biomasy fitoplanktonu w obu częściach zbiornika (dla stanowiska Stawy Stefańskiego – kąpielisko 3338 mg/l, zaś dla stanowiska Stawy Stefańskiego – osadnik 2328, mg/l) była niższa w stosunku do stanowiska Stawy Jana. W zbiorniku Stawy Stefańskiego w części kąpieliskowej dominującą gromadą pod względem biomasy były Cryptophyta. Jej reprezentantem był gatunek Cryptomonas ovata, który dominował nad pozostałymi niemalże w ciągu całego sezonu monitoringowego z wyjątkiem sierpnia i września. Wtedy dominowały inne gatunki takie jak: Peridium bipes z gromady Pyrrophyta (02.08.2013) oraz Gleocapsa turgida z gromady Cyanophyta (09.09.2013). W przypadku stanowiska Stawy Stefańskiego – osadnik nie było już tak wyraźnej dominacji jednego gatunku. Podczas każdego poboru próbek dominował gatunek należący do innej gromady.
Rys. 11 Sezonowa dynamika biomasy fitoplanktonu w roku 2013 w zbiornikach Stawy Jana i Stawy Stefańskiego.

4.6 Wpływ toksyn sinicowych na jakość wód

W sezonie badawczym 2013 odnotowano dwa przypadki występowania mikrocystyn w zbiorniku Stawy Jana, w czerwcu oraz w październiku. W pierwszym przypadku była to MC-RR w ilości 0,29 µg/l, zaś w drugim MC-LR w ilości 0,41 µg/l. W zbiorniku Stawy Stefańskiego w części kąpieliskowej stwierdzono dwukrotne wystąpienie mikrocystyn. Pierwsze w czerwcu (MC-RR w stężeniu 0,29 µg/l), natomiast drugie we wrześniu (MC-RR – 1,42 µg/l, MC-YR – 1,37 i MC-LR – 1,49 µg/l). Na stanowisku Stawy Stefańskiego – osadnik nie stwierdzono występowania mikrocystyn. Stężenia toksyn sinicowych w sezonie monitoringowym 2013 były nieznacznie wyższe niż w latach wcześniejszych (2008-2012), nie osiągnęły jednak tak wysokich wartości jak w przypadku lat 2006-2007 (Rys.13).
Rys. 12 Występowanie toksyn sinicowych na stanowiskach Stawy Jana (a) oraz Stawy Stefańskiego – kąpielisko w roku 2013

Rys. 13 Średnie stężenie toksyn sinicowych w latach 2006-2012 na stanowiskach: Stawy Jana (a), oraz Stawy Stefańskiego – kąpielisko (b).
4.7 Dynamika zooplanktonu w zbiornikach Stawy Jana i Stawy Stefańskiego

Na stanowisku Stawy Jana maksymalną biomasę zooplanktonu wynoszącą 28,8 mg/l zmierzono w dniu 02.08.2013. Wartość średnia dla całego sezonu badawczego 2013 wyniosła 10 mg/l. W trakcie całego sezonu monitoringowego dominację pod względem biomasy osiągnęła podgromada Copepoda w postaci Nauplius. Jedynie w okresie maja 2013 znaczną przewagę nad innymi gatunkami uzyskał rodzaj Daphnia. W połowie sezonu monitoringowego (02.08.2013) wysoką biomasę w stosunku do pozostałych (obok Copepoda) odznaczały się widłonogi z rzędu Cyclopoida. Podczas ostatnich dwóch poborów (we wrześniu i w październiku) w próbkach wody współ dominowały Copepoda i Asplanchna.

W zbiorniku Stawy Stefańskiego biomasa zooplanktonu była znacznie wyższa. Maksimum dla stanowiska Stawy Stefańskiego – kąpielisko wynoszące 248,6 mg/l odnotowano w dniu 27.05.2013. Najwyższą biomasę zooplanktonu 642,8 mg/l, wyróżniającą się na tle pozostałych wartości odnotowano w dniu 02.08.2013 na stanowisku Stawy Stefańskiego w części osadnikowej. Średnie wartości biomasy zooplanktonu dla stanowisk Stawy Stefańskiego – kąpielisko i Stawy Stefańskiego – osadnik wyniosły odpowiednio: 72,5 mg/l i 110,6 mg/l. Na stanowisku Stawy Stefańskiego – kąpielisko dominującym pod względem biomasy był rodzaj Keratella. Taki rozkład występował wiosną, pod koniec lata oraz jesienią. W średku sezonu monitoringowego wysoką biomasę w stosunku do pozostałych odznaczały się rodzaje Polyphemus i Bosmina (24.06.2013) oraz rząd Cyclopoida i rodzaj Leptodora (02.08.2013). Na stanowisku Stawy Stefańskiego – osadnik podobnie jak w przypadku fitoplanktonu nie było ani grup ani gatunków zooplanktonu, które dominowałyby w całym sezonie monitoringowym. Przewaga pod względem ilości biomasy zmieniała się dynamicznie i przy każdym kolejnym poborze próbek do analiz dominowała inna grupa lub gatunek.
Rys. 14 Sezonowa dynamika biomasy zooplanktonu w roku 2013 w zbiornikach Stawy Jana i Stawy Stefańskiego.

4.8 Skład gatunkowy ichtiofauny oraz jej rola w strukturze troficznej

W obu zbiornikach odnotowano łącznie 9 gatunków ryb. Sześć z nich należało do rodziny karpiowatych (słonecznica, płoć, czebaczek, karaś srebrzysty, karaś pospolity, kiełb), dwa do rodziny okoniowatych (okoń i jazgarz) i jeden do rodziny sumikowatych (sumik karłowaty). Większa różnorodność gatunkowa występuła w zbiorniku Stawy Stefańskiego (7 gatunków) w stosunku do zbiornika Stawy Jana (6 gatunków). W pierwszym zbiorniku gatunkiem dominującym był karaś srebrzysty – 45%, w drugim zaś dużą przewagę (74% ogółu) nad innymi gatunkami pod względem liczebności uzyskała płoć.

Odnotowane osobniki należące do 9 gatunków są reprezentantami 6 grup tworzących strukturę troficzną obu zbiorników. W zależności od rodzaju pobieranego pokarmu wyróżniono następujące grupy ryb: roślinożerne (brak przedstawicieli), zooplanktonożerne (słonecznica), zooplanktonożerne/bentosożerne (okonie o dł. do 15,5 cm), wszystkożerne (czebaczek, sumik karłowaty), bentosożerne (kiełb, jazgarz), bentosożerne/detrytusożerne (karaś pospolity, karaś srebrzysty, płoć), bentosożerne drapieżne (okonie o dł. 15,6 – 29,9 cm) oraz drapieżne (brak przedstawicieli). Na Rys. 16 przedstawiona została optymalna struktura troficzna zbiornika wodnego (Jurczak i in. 2012) na tle wyników uzyskanych w roku 2013 dla zbiorników Stawy Jana i Stawy Stefańskiego.
Rys. 15 Struktura dominacji gatunkowej ryb zbiorników Stawy Jana (a) i Stawy Stefańskiego (b) wyrażona procentowym udziałem liczebności każdego gatunku.

Rys. 16 Obecna i optymalna struktura troficzna ryb w zbiornikach Stawy Jana i Stawy Stefańskiego. Optymalna struktura gatunkowa przyjęta została ze źródła: (Jurczak i in. 2012).
4.9 Wpływ osadów dennych na jakość wód

Azot ogólny zakumulowany w osadach dennych w Zbiorniku Stawy Jana kształtował się na poziomie 0,9 mg/100g. W przypadku zbiornika Stawy Stefańskiego zawartość azotu w osadach dennych była wyższa i wyniosła odpowiednio: 1,2 mg/100g dla stanowiska Stawy Stefańskiego – kąpielisko oraz 3 mg/100g dla stanowiska Stawy Stefańskiego – osadnik.

Fosfor zakumulowany w osadach dennych w zbiorniku Stawy Jana kształtował się na poziomie 8,2 mg/100g. W przypadku zbiornika Stawy Stefańskiego zawartość fosforu w osadach dennych była wyższa. Na stanowisku Stawy Stefańskiego – kąpielisko wyniosła ona 37,5 mg/100g, zaś na stanowisku Stawy Stefańskiego – osadnik 21,2 mg/100g.

Tab. 2 Zawartość azotu i fosforu w osadach dennych

<table>
<thead>
<tr>
<th></th>
<th>St. Jana</th>
<th>St. Stefańskiego - kąpielisko</th>
<th>St. Stefańskiego - osadnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>N ogólny [mg/100g]</td>
<td>0,9</td>
<td>1,2</td>
<td>3</td>
</tr>
<tr>
<td>SD</td>
<td>0,01</td>
<td>0,02</td>
<td>0,04</td>
</tr>
<tr>
<td>P2O5 [mg/100g]</td>
<td>8,2</td>
<td>37,5</td>
<td>21,2</td>
</tr>
<tr>
<td>SD</td>
<td>1,2</td>
<td>5,6</td>
<td>3,2</td>
</tr>
</tbody>
</table>

4.10. Oddziaływanie zagospodarowanie terenu w zlewni na zbiorniki Stawy Jana i Stawy Stefańskiego

Z analizy środowiskowej zagospodarowania terenu w zlewni zbiornika Stawy Jana wynika, że głównym zagrożenie jest spływ powierzchniowy wód deszczowych z pobliskich osiedli, parkingów oraz szlaków komunikacyjnych (Rys 17). Wody deszczowe spluwające zanieczyszczenia są transportowane bezpośrednio do rzeki Olechówka poprzez systemy kanalizacyjne. Największe tego typu zagrożenie umiejscowione jest na rzece Olechówka poniżej zbiornika na wysokości ul. Wczesnej. Znajduje się tam kilka wylotów kanalizacji burzowej odprowadzających zanieczyszczenia z ulic.
Z analizy środowiskowej zagospodarowania terenu w zlewni zbiornika Stawy Stefańskiego przedstawionej na Rys. 18 wynika, że trzema głównymi zagrożeniami są: spływ wód deszczowych bezpośrednio do rzeki, spływ powierzchniowy z pól uprawnych oraz punktowe źródła zanieczyszczeń. Pierwsze z nich dotyczy spływu powierzchniowego wód transportującego zanieczyszczenia splukiwane z dróg oraz osiedli mieszkaniowych. Drugi rodzaj zagrożeń związany jest z transportem substancji biogenicznych, których źródłem jest intensywne nawożenie pól uprawnych oraz chemiczna ochrona roślin. Trzeci rodzaj zagrożeń dotyczy miejsc w których zanieczyszczenia przedostają się do rzek zasilających lub bezpośrednio do zbiorników. Pochodzą one m.in. z nielegalnych zrzutów ścieków komunalnych z gospodarstw domowych.
Rys. 18 Analiza środowiskowa, identyfikacja zagrożeń na podstawie zagospodarowania terenu w zlewni zbiornika Stawy Stefańskiego.
5. Dyskusja

Rekultywacja zbiorników Stawy Jana i Stawy Stefańskiego w Łodzi w oparciu o identyfikację i redukcję źródeł zanieczyszczeń i symptomów eutrofizacji pozwoli odbudować wartości przyrodnicze i funkcje rekreacyjne tych miejsc. Należy również podjąć działania zmierzające do zwiększenia odporności wyżej wymienionych ekosystemów na nasilającą się zmiany w obszarach zurbanizowanych antropopresję. Bierność wobec procesów eutrofizacji w połączeniu z intensyfikacją oddziaływania człowieka na naturalne ekosystemy prowadzi do zaburzenia ich równowagi. Zmieniają się zarówno interakcje troficzne jak i procesy zachodzące w ekosystemach. Różne metody ochrony i rekultywacji, które mogą być pomocne w zabiegach poprawiających jakość wody w zbiornikach Stawy Jana i Stawy Stefańskiego opisywanych w niniejszej pracy przetestowano wcześniej w zbiornikach Arturówek zlokalizowanych w północnej części Łodzi. Ich rekultywacja realizowana jest przez UL, Miasto Łódź i LSI w ramach projektu EH-REK z programu LIFE+. Doświadczenia związane z funkcjonowaniem i efektywnością określonych rozwiązań z pewnością będą miały wpływ na wybór właściwych dla danego ekosystemu metod ochrony i rekultywacji w przypadku zbiorników Stawy Jana i Stawy Stefańskiego.
W zlewni zbiornika Stawy Stefańskiego największym zagrożeniem jest rzeka Gadka. Wprowadza ona do akwenu największą ilość zanieczyszczeń spośród wszystkich monitorowanych dopływów obu akwenów. Świadczą o tym wysokie wartości przewodnictwa, w szczególności na stanowisku zlokalizowanym w miejscowości Nowa Gadka (średnio w granicach 1500 µS/cm). Dla porównania przewodnictwo w ciekach naturalnych powinno charakteryzować się wartościami rzędu 50-1000 µS/cm (Hermanowicz i in. 1999). Odnotowano tam również najwyższe stężenia: TN i TP oraz azotanów spośród całej zlewni zbiornika Stawy Stefańskiego. Stężenie TN osiągnęło wartość średnią 48,70 mg/l, tym samym przekraczając prawie 5-krotnie normę na II klasy jakości wód (Dz. U. 2008, nr 162, poz. 1008). Podobnie było w przypadku stężenia TP, którego wartość średnia 1,53 mg/l znacząco przekraczała wartości charakteryzujące I (wartość graniczna 0,2 mg/l) i II (wartość graniczna 0,4) klasę jakości wód (Dz. U. 2008, nr 162, poz. 1008). Średnie stężenie azotanów na stanowisku w miejscowości Nowa Gadka wynoszące aż 212,3 mg/l prawie 100-krotnie przekraczało normę dla I klasy jakości wód (Dz. U. 2008, nr 162, poz. 1008). Badania Romaniuk 2009 realizowane na tym samym stanowisku również wykazały wysokie stężenie azotanów wynoszące 1208,08 mg/l. Wszystkie wyżej wymienione wartości poszczególnych parametrów fizycznych i chemicznych wody mogą świadczyć o istnieniu punktowych źródeł zanieczyszczeń w okolicach stanowiska zlokalizowanego w miejscowości Nowa Gadka. Ich źródłem mogą być zarówno ścieki komunalne, jak i te pochodzące z intensywnie prowadzonej produkcji rolnej. Główne za sprawą tego stanowiska monitoringowego rzeka Gadka stała się głównym dostarczycielem ładunku zanieczyszczeń do zbiornika Stawy Stefańskiego. Metodą mającą na celu zmniejszenie ilości zanieczyszczeń wprowadzanych do zbiornika jest konstrukcja zbiornika sedymentacyjnego do zatrzymywania głównie zawiesiny transportowanej rzeką lub stworzenie systemu sekwencyjnego jednocześnie redukującego zawiesinę w części sedymentacyjnej oraz związki azotu i fosforu w części geochemicznej i biologicznej. Wstępne wyniki badań realizowanych w projekcie EH-REK wykazują, iż tak skonstruowany system jest w stanie redukować od 35% nawet do 90% zanieczyszczeń (głównie zawiesiny oraz związków azotu i fosforu) transportowanych rzeką (www.arturowek.pl, Wagner i Zalewski 2013).

W przypadku zlewni zbiornika Stawy Jana sporym problemem są zanieczyszczone wody opadowe spływające z miejskich powierzchni uszczelnionych. Wody te trafiają z ulic bezpośrednio do rzeki Olechówki pogarszając znacznie jakość jej wód, na co wskazują wyniki badań uzyskane w pracy. Problem ten dotyczy głównie odcinka rzecznego
zlokalizowanego poniżej zbiornika Stawy Jana na wysokości ulicy Wczesnej, gdzie znajdują się liczne wyloty kanalizacji burzowej. Odprowadzane nimi wody zawierają zanieczyszczenia (pyły, produkty ropopochodne, sole do odśnieżania dróg) splukiwane z nieprzepuszczalnych powierzchni miejskich. Są one źródłem zawiesiny która przyczynia się do tworzenia osadów dennyh oraz metali ciężkich które są w nich akumulowane. Potwierdzają to badania prowadzone w Genui przez Gnecco i in. 2005, które wykazały że średnia zawartość zawiesiny ogólnej i metali ciężkich (miedź, ołów, cynk) w ściekach deszczowych pochodzących z dróg wyniosła odpowiednio: 140 g z.o./m3, 19,4 mg Cu/m3, 13,2 mg Pb/m3 i 81,1 mg Zn/m3. W przypadku ścieków pochodzących zarówno z kanalizacji burzowej jak i ogólnospławnej najwyższa kumulacja zanieczyszczeń obserwowana jest po okresie długotrwałej suszy. Wówczas zanieczyszczenia zdeponowane są przez dłuższy okres czasu na powierzchniach nieprzepuszczalnych (Osmulska-Mróz 1992, Zawilski 2003). W tym przypadku należałoby zaadaptować istniejący zbiornik retencyjny zlokalizowany przy ulicy Rzemieślniczej w system sedymentacyjno-biofiltracyjny do przyjmowania i podczyszczania wód deszczowych (Rys. 19).

Rys. 19 Zbiornik retencyjny zlokalizowany w dolinie rzeki Olechówki na wysokości ul. Rzemieślniczej.
Rzeką Olechówką do zbiornika Stawy Jana transportowane są nie tylko zanieczyszczenia w postaci związków azotu i fosforu, ale i znaczne ilości zawiesiny (Rys. 20). Przyczynia się to do okresowego występowania zakwitów głonów i sinic w tym zbiorniku. Badania przeprowadzone przez Jacobsena i in. 1994 wykazały, że wraz z zawiesiną do wód powierzchniowych doprowadzane jest aż 80% fosforu. Zabiegiem rekultywacyjnym ograniczającym proces tzw. zasilania wewnętrznego zbiornika poprzez osady denne jest bagrowanie. Ilość związków biogenicznych usuniętych przy zastosowaniu tego zabiegu może być różna i uzależniona jest od charakteru zlewni danego zbiornika. Badania Fana i in. 2004 na jeziorze Wuli zlokalizowanym w mieście Nanjing and Wuxi w dzielnicy Jingsu, pokazują pozytywne skutki zastosowania zabiegu bagrowania dla poprawy jakości wód. Zbiornik ten był silnie zeutrofizowany i posiadał grubą warstwę osadów dennych odznaczających się wysoką zawartością substancji biogenicznych. Po pół roku od przeprowadzeniu zabiegu bagrowania w tym jeziorze stężenie całkowite fosforu rozpuszczonego w wodzie zostało zredukowano o blisko 40%. Z kolei w przypadku całkowitego azotu rozpuszczonego w wodzie nie odnotowano znacznego spadku stężenia tego pierwiastka. Wiąże się to z mniejszą zdolnością tego związku do uwalniania się z osadów dennych.

Rys. 20 Zróżnicowanie grubości warstwy osadów dennych w zbiorniku Stawy Jana oraz systemy kanalizacyjne odprowadzające wody bezpośrednio do zbiornika (Tusiński 2014)
Jednak redukcja związków biogenicznych poprzez zabieg bagrowania nie przyniesie długotrwałego efektu, jeśli nie zostanie zredukowana ilość zawiesiny dopływającej do zbiornika. W przypadku zbiorników płytkich, w których proces zasilania wewnętrznego jest niewielki efekty bagrowania mogą niekiedy uzyskać efekt odwrotny od zamierzonego, poprzez odsłonięcie zdeponowanych zanieczyszczeń znajdujących się w głębszych warstwach osadu. W przypadku zbiornika stawy Jana dość sporym problemem jest odprowadzenie nieczystości z terenów rekreacyjnych zlokalizowanych bezpośrednio w sąsiedztwie zbiornika do jego wód. Rys. 20 przedstawia liczne systemy kanalizacyjne wprowadzające zanieczyszczenia bezpośrednio do czaszy zbiornika stawy Jana, których likwidacja jest konieczna w celu uzyskania dobrego stanu wód w zbiorniku.

Znakomitym rozwiązaniem w przypadku płytkich zbiorników wodnych, jakim jest również zbiornik Stawy Jana, jest wykorzystanie naturalnej roślinności szuwarowej poprzez rozbudowanie jej strefy np. w górnej części zbiornika. Przyczyni się to do spowolnienia biegu rzeki, sedymentacji zawiesiny i wbudowania w strukturę roślin zanieczyszczeń transportowanych rzeką. Rośliny te mają również zdolność asymilowania metali ciężkich, a następnie wbudowywania ich we własne tkanki. Wesołowski in. 2011 wykazali, że roślinność ta eliminuje pierwiastki biogeniczne – N i P oraz inne makroelementy: K, Na, Ca, Mg i mikroelementy: Fe, Mn i Zn. Średnia zawartość tych związków w suchej masie roślinności szuwarowej wynosiła odpowiednio: 37,9 g N/kg s.m., 2,9 g P/kg s.m., 23,9 g K/ kg s.m., 0,25 g Na/ kg s.m., 5,5 g Ca/ kg s.m., 1,7 g Mg/kg s.m., 181,1 mg Fe /kg s.m., 258,65 mg Me/kg s.m., i 20 mg Zn/kg s.m. Ponadto wg ich badań zbiorowiska roślinne jednogatunkowe lepiej eliminują azot z wody, a zbiorowiska roślinne wielogatunkowe lepiej eliminują fosfor. W celu poprawy wydajności asymilacji wyżej wymienionych związków należałoby zwiększyć powierzchnię zajmowaną przez tego typu roślinność, tworząc swoistą strefę biofiltracyjną.

W przypadku zbiornika Stawy Stefańskiego skład osadów dennych jest uwarunkowany rodzajem zanieczyszczeń transportowanych systemami rzecznymi. W części osadnikowej zbiornika, do którego wpływa rzeka Ner, odnotowano wyższe stężenie azotu, w stosunku do kąpieliska. Główną tego przyczyną jest rolniczy charakter zlewni wyżej wymienionej rzeki i co za tym idzie spływ związków azotu z nawożonych pól uprawnych. W zlewni zbiornika Stawy Stefańskiego problem stanowi również spływ powierzchniowy z terenów intensywnie użytkowanych rolniczo. Badania Pęczuły i Suchory 2011 przeprowadzone na zbiorniku retencyjnym w Kraśniku, zasilanym przez wody rzeki Wyżyny wykazują znaczny wpływ rolniczego użytkowania zlewni na stan wód zbiornika w Kraśniku.
Wysokie wskaźniki Carlsona (WSTₜₚ) dotyczące stanu trofii tego zbiornika wynoszące odpowiednio: 7,5 w roku 2008 i 77,4 w roku 2009 powiązane były z wysokimi stężeniami substancji biogenicznych doprowadzany do zbiornika rzeką Wyżnica. Jej zlewnia charakteryzuje się dużym udziałem użytków rolnych wynoszącym aż 74% powierzchni.

Większe stężenie azotu w spływie w stosunku do stężenie fosforu spowodowane jest różną rozpuszczalnością tych związków w wodzie. Azot rozpuszcza się szybciej w stosunku do fosforu, który z kolei ma zdolność do sorpcji na cząsteczkach materiału zawieszonego transportowanego przez rzekę. Przez to stężenie azotu w rzekach wzrasta w okresach nawożenia pól uprawnych, przy czym dotyczy to rzek o niewielkich zlewniach (Chełmicki 2002). W części kąpieliskowej zbiornika, do którego wpływa bezpośrednio rzeka Gadka odnotowano wyższe stężenie fosforu (wartość średnia na dopływie 0,4 mg/l) w stosunku do osadnika (wartość średnia na dopływie 0,18 mg/l). Duży ładunek fosforu jest wprowadzany przez wyżej wymienioną rzekę głównie za sprawą zrzutowanie nieoczyszczonych ścieków komunalnych. Pawęska i Kuczewski 2008 wykazali wysoką średnią zawartość tego pierwiastka w ściekach bytowych dopływających do oczyszczalni roślinno-glebowej w Brzeźnie w latach 2002-2005 na średnim poziomie 15,7 mg P/l. W przypadku drugiej oczyszczalni tego samego typu w Mroczeniu w latach 2002-2005 stężenie fosforu w dopływających ściekach bytowych wyniosło 19 mg P/l. Wprowadzenie do niewielkiego cieku jakim jest Gadka ścieków bytowych o takiej zawartości fosforu, znacząco wpłynęłoby na pogorszenie jakości wód w rzecz zasilającej zbiornik. Prócz ścieków bytowych pierwiastek ten wprowadzany jest do zbiornika również ze spływu powierzchniowego wód deszczowych pochodzących z osiedli mieszkaniowych i pól uprawnych. Wszystkie wyżej wymienione elementy wpływają na skład osadów dennych gromadzących się w zbiorniku. Rozwiązaniem problemów związanych z ładunkiem azotu i fosforu zdeponowanym w osadach dennych, może być bagrowanie, czyli mechaniczne usuwanie osadów dennych z wykorzystaniem ciężkiego sprzętu.

Kolejnym zagrożeniem wpływającym na proces eutrofizacji obu zbiorników jest zaburzona struktura troficzną. Uzyskane wyniki dotyczące liczebności poszczególnych grup ryb z roku 2013 (Rys. 16) zarówno w zbiorniku Stawy Jana jak i Stawy Stefańskiego wskazują na zachwianą strukturę troficzną, co negatywnie przekłada się na stan jakości wód. W pierwszym z nich stwierdzono zbyt duży udział procentowy ryb zoo planktonożernych – 31,7% (optimum – brak), bentosóżernych – 14,4% (optimum 4%) i bentosóżernych/ detrytusożernych – 48,1% (optimum 35%). W zbiorniku Stawy Jana jest zbyt mała liczebność ryb wszystkożernych – 2,4% ogółu (optimum 15%) oraz całkowity brak ryb bentosóżernych/

W zlewni zbiorników Stawy Jana i Stawy Stefańskiego, podobnie jak w większości zlewni miejskich, poważny problem stawią wezbrania wód w okresie wiosennych roztopów i po intensywnych opadach deszczu. W trakcie prowadzonych badań w dniu 24.06.2013 stwierdzono gwałtowny wzrost przepływu wód rzek zasilających oba akweny po okresie intensywnych opadów deszczu. Powodują one pogarszanie się jakości wód na skutek erozji brzegów koryta, a także powodują uwolnienie zanieczyszczeń zgromadzonych w osadach dennych (Podawca 2012). Systemy sedymentacyjno-biofiltracyjne konstruowane na wlocie dopływu rzek do zbiorników mają również za zadanie spowolnienie biegu rzeki tym samym częściowo redukując samą falę wezbraniową jak i zanieczyszczenia nią transportowane. Jednakże przy tak dużym problemie fali wezbraniowej w obszarach zurbanizowanych przy konstruowaniu zbiorników wstępnych należy brać pod uwagę skalę wielkości okresowo
wysokich stanów wód w rzekach zasilających zbiorniki główne. Posłuży to do oszacowania odpowiedniej pojemności retencyjnej jaką powinny mieć zbiorniki wstępne, ażeby mogły dobrze spełniać swoja funkcję.

Przeprowadzona w ramach pracy analiza porównawcza zbiorników Stawy Jana i Stawy Stefańskiego wskazuje jednoznacznie, iż na jakość wód w zbiornikach znaczy wpływ ma również sposób zagospodarowania zlewni. O ile zlewnia zbiornika Stawy Jana jest mniejsza z uregulowanym systemem kanalizacji, jednakże charakteryzuje się znacznie szczelniejszą zabudową (większy odsetek terenów mieszkaniowych), co intensyfikuje procesy spływu wód deszczowych do rzeki Olechówki i zbiornika. Z kolei w zlewni zbiornika Stawy Stefańskiego znacznym problemem jest brak systemu kanalizacji w zlewni rzeki Gadka oraz zagospodarowanie rolnicze zlewni rzeki Ner. Znacznie większa dostępność terenów wokół zbiornika Stawy Stefańskiego i rzek zasilających stwarza możliwości redukcji zanieczyszczeń transportowanych ze zlewni do rzek. Przykładem może być zastosowanie stref ekotonowych czy ścian denitrifikacyjnych redukujących zanieczyszczenia związkami azotowymi wymywanymi z terenów rolniczych. Skuteczność takich rozwiązań sięgać może nawet 80% (Yin i Lan 1995). Ponadto zbiornik ten znajduje się na pograniczu trzech gmin, co z punktu administracyjnego znacznie utrudnia przeprowadzenie działań rekultywacyjnych i ochronnych w zlewni tego zbiornika.
6. Wnioski:

Zarówno zbiornik Stawy Jana jak i zbiornik Stawy Stefańskiego są zbiornikami charakteryzującymi się znaczną eutrofizacją i wymagają w celu poprawy jakości wód działań rekultywacyjno-ochronnych. Jednakże ze względu na skalę zagrożeń przedstawionych w pracy oraz możliwości administracyjne pozwalające na wykonanie takich zabiegów rekultywacja zbiorników stawa Jana wydaje się prostsza i szybsza w realizacji. Rekultywacja zbiornika Stawy Stefańskiego będzie procesem długotrwałym, ze względu na: konieczność porozumienia się władz trzech gmin (Łódź, Rzgów i Ksawerów) odnośnie stworzenia systemu kanalizacji oraz dużą ilość zanieczyszczeń pochodzących ze źródeł obszarowych. Jednakże proces powrotu zbiorników do pełnej stabilności po przeprowadzonych działaniach rekultywacyjnych jest długotrwały i nie zawsze może przynieść zamierzony skutek.

Stawy Stefańskiego:

- Średnie stężenie TN i TP na dopływie rzeki Gadka do zbiornika stawy Stefańskiego w roku 2013 było odpowiednio o 165% i o 135% wyższe niż w wodach samego zbiornika oraz o 190% wyższe niż na odpływie wód ze zbiornika.
- Średnie stężenie TN i TP na stanowisku zlokalizowanym w Nowej Gadce było w roku 2013 odpowiednio aż 10-krotnie i 9-krotnie wyższe niż średnie stężenie tego pierwiastka w zbiorniku.
- Średnie stężenie TN i TP na dopływie rzeki Ner do zbiornika stawy Stefańskiego było odpowiednio o 25% wyższe i o 60% niższe niż w wodach zbiornika oraz 40% i 5% wyższe niż na odpływie ze zbiornika, co podkreśla znaczny wpływ rzeki Gadka na zawartość fosforu w zbiorniku.
- Zawartość fosforu w osadzie dennym zbiornika głównego stawy Stefańskiego zasilanego rzeką Gadka jest o 75% wyższa niż w części osadnikowej tego zbiornika zasilanej rzeką Ner.
- Zawartość azotu w części osadnikowej zbiornika jest o ok. 150% wyższa niż w części kąpieliskowej zbiornika.

Stawy Jana

- Adaptacja czaszy zbiornika stawy Jana poprzez eliminację licznych wlotów zanieczyszczeń z terenu rekreacyjnego zlewni bezpośrednio do zbiornika oraz ograniczenie dopływu zawiesiny i zanieczyszczeń transportowanych Olechówką
poprzez konstrukcję na wlocie do zbiornika systemu sedymantacyjno-bioflitarzyjnego ograniczy symptomy eutrofizacji tego zbiornika bez konieczności jego odmulania.

- Średnie stężenie TN i TP na stanowisku umiejscowionym poniżej zbiornika stawy Jana (okolice ulicy Wczesnej) w roku 2013 było w obu przypadkach o około 50% wyższe niż w wodach samego zbiornika, co potwierdza wpływ wód burzowych zasilających rzekę Olechówkę poprzez wyloty burzowe zlokalizowane bezpośrednio poniżej zbiornika.
7. Streszczenie

Analiza porównawcza zbiorników Stawy Jana i Stawy Stefańskiego pod kątem ich rekultywacji

Obecnie cały świat zmaga się z problemem ciągłego zmniejszania się zasobów wód słodkich. Jest to spowodowane poprzez antropopresję, która przyczynia się do zmian klimatu oraz zaburza cykl hydrologiczny. Problem ten istnieje również w skali lokalnej i przejawia się w pogorszeniu jakości wód w rzekach i zbiornikach wodnych. Głównym zagrożeniem dla zbiorników zaporowych na całym świecie jest proces eutrofizacji, spowodowany nadmiernym dopływem związków biogenicznych (głównie azotu i fosforu). Proces ten jest szczególnie niebezpieczny dla zdrowia i życia ludzi gdy zakwity tworzone są przez toksyczne sinice. Nasz kraj zobowiązany jest do spełnienia wymogów Ramowej Dyrektywy Wodnej i osiągnięcia dobrej jakości wszystkich wód do roku 2015. Celem pracy jest identyfikacja i analiza zagrożeń jakie występują w zlewniach zbiorników Stawy Jana i Stawy Stefańskiego w Łodzi na podstawie badań monitoringowych.

Badania monitoringowe przeprowadzono 6-krotnie w okresie od 30 kwietnia do 22 października 2013 r, na 11 stanowiskach: 3 w zlewni zbiornika Stawy Jana i 8 w zlewni zbiornika Stawy Stefańskiego. Badania monitoringowe obejmowały pomiary wód i osadów dennych w zakresie: parametrów fizycznych i chemicznych, parametrów hydrologicznych rzek, biomasy fito- i zooplanktonu oraz skład gatunkowy ryb w zbionikach oraz badania toksykologiczne.

W zlewni zbiornika Stawy Stefańskiego największy ładunek zanieczyszczeń wprowadzany jest przez rzekę Gadka, co jest związane ze spływem substancji biogenicznych z pól uprawnych oraz z nieuregulowaną gospodarką ściekową. W zlewni zbiornika Stawy Jana największym zagrożeniem są wloty kanalizacji burzowej zlokalizowane poniżej zbiornika, które odprowadzają zanieczyszczenia z dróg oraz powierzchni nieprzepuszczalnych. W obu zbiornikach problemem jest także nieprawidłowa struktura troficzna, w tym całkowity brak ryb drapieżnych, które pośrednio wpływają na nadmierny rozwój fitoplanktonu. W latach 2008-2012 w obu zbiornikach obserwowano wyraźny spadek stężenia mikrocystyn: MC-LR, MC-YR i MC-RR w stosunku do lat 2006-2007. Tendencję ta potwierdzają badania monitoringowe przeprowadzone w roku 2013. Jest to związane ze zmianą struktury fitoplanktonu, a konkretnie ze spadkiem biomasy sinic (Cyanophyta) i wzrostem biomasy zielnic (Chlorophyta), euglen (Euglenophyta) i okrzemek (Bacillariophyta).
Summary

Comparative analysis of Jana and Stefański reservoirs for their recultivation

Currently the whole world contend a steadily declining freshwater resources. It is caused by anthropopressure, which contributes to climate change and disturbs the hydrological cycle. This problem is also locally and is manifested by the deterioration of water quality in rivers and reservoirs. The main threat to reservoirs around the world is the process of eutrophication caused by excessive biogenic elements inflow (mainly nitrogen and phosphorus). This process is especially dangerous to the humans health and life, when blooms are created by toxic blue-green algae. Our country is obliged to meet the requirements of the Water Framework Directive and achieve a good quality of all waters until 2015. The aim of the study is to identify and analyze the risks in the basin of Jana and Stefański reservoirs in Lodz based on monitoring studies.

Monitoring studies were carried out 6 times in the period from 30 April until 22 October 2013, at 11 station: 3 in the basin of Jana reservoir and 8 in the basin of Stefański reservoir. Monitoring studies included measurements of water and sediments in the range of: physical and chemical parameters of water, rivers hydrological parameters, phyto- and zooplankton biomass, fish community and toxicological studies.

In the basin of Stefański reservoir the largest pollution load is entered by the Gadka river, which is related to the runoff of nutrients from agricultural fields and unregulated wastewater management. In the basin of Jana reservoir the largest threat is storm sewer escape located downstream of the reservoir, which discharge pollutants from roads and impervious surfaces. In both reservoirs problem is the wrong trophic structure, the total absence of predatory fish, which indirectly affect from the excessive growth of phytoplankton. In 2008-2012, in both reservoirs observed significant decrease in the concentration of microcystins MC-LR, MC-YR and MC-RR in comparison to 2006-2007. This tendency is confirmed by monitoring tests carried out in 2013. It is related to the change in the structure of phytoplankton, specifically the decline in the biomass of cyanobacteria (Cyanophyta) and increase in the biomass of green algae (Chlorophyta), euglenin (Euglenophyta) and diatoms (Bacillariophyta).
8. Literatura:

Dyrektywa 2000/60/WE Parlamentu Europejskiego i Rady, 23 października 2003 r. ustanawiająca ramy wspólnotowego działania w dziedzinie polityki wodnej.

Dyrektywa 2006/7/WE Parlamentu Europejskiego i Rady z dnia 15 lutego 2006 r. dotycząca zarządzania jakością wody w kąpieliskach.

